
asyncspotify Documentation
Release 0.12.1

RUNIE

Oct 06, 2021

Contents:

1 Quickstart 3
1.1 Installing . 3
1.2 Getting started . 3

2 Examples 7
2.1 Getting Spotify Objects . 7
2.2 Getting playlists and adding tracks . 7
2.3 Searching . 8
2.4 Getting users/yourself . 8

3 API Reference 9
3.1 Client . 9
3.2 Spotify Objects . 16

3.2.1 Track . 16
3.2.2 Artist . 17
3.2.3 Playlist . 18
3.2.4 Album . 19
3.2.5 Audio Features . 21
3.2.6 Audio Analysis . 21
3.2.7 Image . 22
3.2.8 User . 22
3.2.9 Playing Objects . 23
3.2.10 Device . 24

3.3 Authenticators . 25
3.3.1 ClientCredentialsFlow . 25
3.3.2 EasyAuthorizationCodeFlow . 25
3.3.3 AuthorizationCodeFlow . 26

3.4 Scope . 26
3.5 Exceptions . 27
3.6 Utilities . 28

4 Indices and tables 29

Index 31

i

ii

asyncspotify Documentation, Release 0.12.1

asyncspotify is an asynchronous, object-oriented wrapper for the Spotify Web API.

Primary goals of this library:

• easy and intuitive asynchronous interface

• object-oriented inheritance and design

• automatic rate limiting handling

• easy authentication

Contents: 1

asyncspotify Documentation, Release 0.12.1

2 Contents:

CHAPTER 1

Quickstart

This page will guide into installing and setting up a client.

1.1 Installing

The recommended way of installing this library is from PyPI.

pip install asyncspotify

Run pip as a module to install for a specific version of Python:

python3.7 -m pip install asyncspotify

To test your installation, you can import asyncspotify and print the version string:

import asyncspotify
print(asyncspotify.__version__)

1.2 Getting started

To communicate with the Spotify Web API, you have to create a Spotify Application first. Go to this page and create
an app.

After having made an app, you will be forwarded to a page showing miscellaneous stats. The client id and client secret
provided here is what you’ll use when authenticating. If you’re going to use the EasyAuthenticationCodeFlow
authorizer, you have to click edit and add http://localhost/ to the list of redirect URIs.

To authenticate, you have to create an authenticator. If you do not need to access or modify personal data, you can
simply use the ClientCredentialsFlow class:

3

https://developer.spotify.com/dashboard/applications

asyncspotify Documentation, Release 0.12.1

import asyncio
import asyncspotify

async def main():
authenticate using the Client Credentials flow
auth = asyncspotify.ClientCredentialsFlow(

client_id='your client id',
client_secret='your client secret',

)

create and authorize your spotify client
sp = asyncspotify.Client(auth)
await sp.authorize()

done!
playlist = await sp.get_playlist('1MG01HhbCvVhH9NmXhd9GC')
async for track in playlist:

print(track.name)

asyncio.run(main())

If you do need to access and modify personal data, you will have to use the Authentication Code flow and specify the
scope you require. The easiest way to do this is to use the EasyAuthenticationCodeFlow class, which will
handle storing your tokens and fetching them when your program restarts:

this flow is "scoped", which means we have to list the resources we want access to.
you can specify them like this, or do Scope.all() or Scope.none()
scope = asyncspotify.Scope(

playlist_modify_public=True,
playlist_modify_private=True,
playlist_read_private=True,
playlist_read_collaborative=True

)

this is where our tokens will be stored
token_file = 'secret.json'

create our authenticator
auth = asyncspotify.EasyAuthorizationCodeFlow(

client_id='your client_id',
client_secret='your client_secret',
scope=scope,
storage=token_file

)

pass it to our new spotify client and authorize
sp = asyncspotify.Client(auth)
await sp.authorize()

now we can do anything :)
print(await sp.get_me())

The EasyAuthenticationCodeFlow requires a first-time setup, please follow the steps in your console care-
fully. Remember to add http://localhost/ to the list of redirect URIs on your Spotify Application page!

If you need more granular control of how tokens are stored, you can extend AuthenticationCodeFlow with

4 Chapter 1. Quickstart

asyncspotify Documentation, Release 0.12.1

your own methods.

To see some basic usage of the API, see the examples. For everything else, see the API Reference.

1.2. Getting started 5

asyncspotify Documentation, Release 0.12.1

6 Chapter 1. Quickstart

CHAPTER 2

Examples

Here are some various examples on how to misc. operations.

2.1 Getting Spotify Objects

track = await sp.get_track('track_id')
<FullTrack id='track_id' name='track name here'>

album = await sp.get_artist('artist_id')
<FullArtist id='artist_id' name='artist name here'>

and so on for playlists and albums...

to get several instances:

albums = await sp.get_albums('album_id_1', 'album_id_2')
[<FullAlbum id='album_id_1' ...>, <FullAlbum id='album_id_2' ...>]

2.2 Getting playlists and adding tracks

get a playlist
playlist = await sp.get_playlist('1wPvaRtuI8mt10CpP2KnlO')

iterate tracks
async for track in playlist:

print(track)

get the user we're logged in as
me = await sp.get_me()
<PrivateUser id='runie13'>

(continues on next page)

7

asyncspotify Documentation, Release 0.12.1

(continued from previous page)

create a playlist
my_playlist = await me.create_playlist(name='My playlist!', description='This is the
→˓playlist description.')
<FullPlaylist id='0FECu9cwvviV3rwOjDqU9j' name='My playlist!'>

add tracks from the first playlist to newly created second playlist
await my_playlist.add_tracks(*playlist.tracks)

2.3 Searching

get multiple tracks from query
tracks = await sp.search_tracks(q='involvers', limit=2)
[<SimpleTrack id='5xoJhWwvzPJD9k8j8BE2xO' name='27'>, <SimpleTrack id=
→˓'0WUTBejxPUhURFCFfSYbDc' name='Fighting My Fight'>]

get *one* track from query
track = await sp.search_track(q='norton commander')
<SimpleTrack id='5KZiiK8dvTgXaVnegsvvBz' name='Norton Commander (All We Need)'>

get one album from query
album = await sp.search_album('hiatus kaiyote')
<SimpleAlbum id='3qzmmmRmVBiOuMvrerfW4z' name='Choose Your Weapon'>

equivalent methods exist for track, album, artist and playlists.
a general search() method also exists, but check the api reference first!

2.4 Getting users/yourself

to get a user you can use the User getter:
user = await sp.get_user('user_id')
<PublicUser id='user_id'>

to get the user you're logged in as, use get_me:
me = await sp.get_me()
<PrivateUser id='your_user_id'>

user objects have methods themselves, such as create_playlist()
check the api reference for a complete list!

8 Chapter 2. Examples

CHAPTER 3

API Reference

3.1 Client

The Spotify API wrapper client itself.

You can start a client in a context using the async with statement, see below. Do note the client calls Client.
authenticate() itself, so you don’t have to do this.

async with asyncspotify.Client(auth) as sp:
your code here

Otherwise, you would start a client like this:

sp = asyncspotify.Client(auth)
await sp.authenticate()

your code here..

close the client session before you exit
await sp.close()

class asyncspotify.Client(auth)
Client interface for the API.

This is the class you should be interfacing with when fetching Spotify objects.

auth: Authenticator Authenticator instance used for authenticating with the API.

__init__(auth)
Creates a Spotify Client instance.

Parameters auth – Instance of Authenticator

authorize()
Tell the authenticator to authorize this client.

9

asyncspotify Documentation, Release 0.12.1

close()
Close this client session.

create_playlist(user, name, public=False, collaborative=False, description=None)→ asyncspo-
tify.playlist.FullPlaylist

Create a new playlist.

Parameters

• user – User instance or Spotify ID.

• name (str) – Name of the new playlist.

• description (str) – Description of the new playlist.

• public (bool) – Whether the playlist should be public.

• collaborative (bool) – Whether the playlist should be collaborative (anyone can
edit it).

Returns A FullPlaylist instance.

edit_playlist(playlist, name=None, description=None, public=None, collaborative=None)
Edit a playlist.

Parameters

• playlist – Playlist instance or Spotify ID.

• name (str) – New name of the playlist.

• description (str) – New description of the playlist.

• public (bool) – New public state of the playlist.

• collaborative (bool) – New collaborative state of the playlist.

following(type, *ids, limit=None, after=None)
Follow artists or users.

Parameters

• type (str) – The ID type: either artist or user.

• ids (str) – Spotify ID of the artist or the user.

• limit – Maximum number of items to return.

• after – The last artist ID retrieved from the previous request.

get_album(album_id, market=None)→ asyncspotify.album.FullAlbum
Get an album.

Parameters

• album_id (str) – Spotify ID of album.

• market – ISO-3166-1 country code.

Returns FullAlbum instance.

get_album_tracks(album, limit=20, offset=None, market=None) →
List[asyncspotify.track.SimpleTrack]

Get tracks from an album.

Parameters

• album – Album or Spotify ID of album.

10 Chapter 3. API Reference

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

asyncspotify Documentation, Release 0.12.1

• limit – How many tracks to fetch.

• offset – What pagination offset to start from.

• market – ISO-3166-1 country code.

Returns List[SimpleTrack]

get_albums(*album_ids, market=None)→ List[asyncspotify.album.FullAlbum]
Get several albums.

Parameters

• album_ids (str) – Spotify ID of album.

• market – ISO-3166-1 country code.

Returns List[FullAlbum]

get_artist(artist_id)→ asyncspotify.artist.FullArtist
Get an artist.

Parameters artist_id (str) – Spotify ID of artist.

Returns FullArtist instance.

get_artist_albums(artist_id, limit=20, include_groups=None, country=None, offset=None) →
List[asyncspotify.album.SimpleAlbum]

Get an artist’s albums.

Note: This endpoint does not return the track objects for each album. If you need those, you have to fetch
them manually afterwards.

Parameters

• artist_id (str) – Spotify ID of artist.

• limit (int) – How many albums to return.

• kwargs – other query params for this method

Returns List[SimpleAlbum]

get_artist_related_artists(artist)→ List[asyncspotify.artist.FullArtist]
Get an artists related artists.

Parameters artist – Artist or Spotify ID.

Returns A list of maximum 20 FullArtist instances.

get_artist_top_tracks(artist, market=None)→ List[asyncspotify.track.FullTrack]
Returns the top tracks for an artist.

Parameters

• artist – Artist instance or Spotify ID.

• market – ISO-3166-1 country code. Leave blank to let the library auto-resolve this.

Returns A list of maximum 10 FullTrack instances.

get_artists(*artist_ids)→ List[asyncspotify.artist.FullArtist]
Get several artists.

Parameters artist_ids – List of artist Spotify IDs.

3.1. Client 11

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

asyncspotify Documentation, Release 0.12.1

Returns List[FullArtist]

get_audio_analysis(track)→ asyncspotify.audioanalysis.AudioAnalysis
Get Audio Analysis of a track.

Parameters track – Track instance or Spotify ID.

Returns AudioAnalysis

get_audio_features(track)→ asyncspotify.audiofeatures.AudioFeatures
Get Audio Features of a track.

Parameters track – Track instance or Spotify ID.

Returns AudioFeatures

get_audio_features_multiple_tracks(*tracks)→ List[asyncspotify.audiofeatures.AudioFeatures]
Get Audio Features for multiple tracks.

Parameters tracks (str) – Track or a comma seperated list of Spotify IDs

Returns list[AudioFeatures]

get_devices()→ List[asyncspotify.device.Device]
Get a list of user devices.

Returns A list of maximum 20 devices.

get_followed_artists(limit=20, after=None)→ List[asyncspotify.artist.SimpleArtist]
Get user’s followed artists

Parameters

• limit (int) – The maximum number of items to return. Default - infinity

• after – What artist ID to start the fetching from.

Returns List[SimpleArtist]

get_me()→ asyncspotify.user.PrivateUser
Gets the current user.

Returns A PrivateUser instance of the current user.

get_me_top_artists(limit=20, offset=0, time_range=’medium_term’) →
List[asyncspotify.artist.SimpleArtist]

Get the top artists of the current user.

Parameters

• limit (int) – How many artists to return. Maximum is 50.

• offset (int) – The index of the first result to return.

• time_range (str) – The time period for which data are selected to form a top.

Valid values for time_range

• long_term (calculated from several years of data and including all new data as it becomes
available),

• medium_term (approximately last 6 months),

• short_term (approximately last 4 weeks).

Returns List[SimpleArtist]

12 Chapter 3. API Reference

asyncspotify Documentation, Release 0.12.1

get_me_top_tracks(limit=20, offset=None, time_range=None) →
List[asyncspotify.track.SimpleTrack]

Gets the top tracks of the current user.

Requires scope user-top-read.

Parameters

• limit (int) – How many tracks to return. Maximum is 50.

• offset (int) – The index of the first result to return.

• time_range (str) – The time period for which data are selected to form a top.

Valid values for time_range

• long_term (calculated from several years of data and including all new data as it becomes
available),

• medium_term (approximately last 6 months),

• short_term (approximately last 4 weeks).

Returns List[SimpleTrack]

get_player(**kwargs)→ asyncspotify.playing.CurrentlyPlayingContext
Get a context for what user is currently playing.

Parameters kwargs – query params for this request

Returns PlayingContext

get_playlist(playlist_id)→ asyncspotify.playlist.FullPlaylist
Get a pre-existing playlist.

Parameters playlist_id (str) – Spotify ID of the playlist.

Returns FullPlaylist instance.

get_playlist_tracks(playlist)→ List[asyncspotify.track.PlaylistTrack]
Get tracks from a playlist.

Parameters playlist – Playlist instance or Spotify ID.

Returns List[PlaylistTrack]

get_track(track_id)→ asyncspotify.track.FullTrack
Get a track.

Parameters track_id (str) – Spotify ID of track.

Returns FullTrack instance.

get_tracks(*track_ids)→ List[asyncspotify.track.FullTrack]
Get several tracks.

Parameters track_ids (str) – List of track Spotify IDs.

Returns List[FullTrack]

get_user(user_id)→ asyncspotify.user.PublicUser
Get a user.

Parameters user_id (str) – Spotify ID of user.

Returns A PublicUser instance.

3.1. Client 13

asyncspotify Documentation, Release 0.12.1

get_user_playlists(user)→ List[asyncspotify.playlist.SimplePlaylist]
Get a list of attainable playlists a user owns.

Parameters user – User instance or Spotify ID.

Returns List[SimplePlaylist]

player_next(device=None)
Skip to the next track in a player.

Parameters device – Device or Spotify ID.

player_pause(device=None)
Stop playback on a device.

Parameters device – Device or Spotify ID.

player_play(device=None, **kwargs)
Start playback on device.

Parameters

• device – Device or Spotify ID.

• kwargs – body params of the request.

Example:

player_play(
context_uri='spotify:album:6xKK037rfCf2f6gf30SpvL',
offset=dict(uri='spotify:track:2beor6qrB0XJxW1CM6X9x2'),
position_ms=98500

)

player_prev(device=None)
Play the previous track.

Parameters device – Device or Spotify ID.

player_repeat(state, device=None)
Set player repeat mode.

Parameters

• state (str) – Can be ‘track’, ‘context’ or ‘off’.

• device – Device or Spotify ID.

player_seek(time, device=None)
Seek to a point in the currently playing track.

Parameters

• time – timedelta object or milliseconds (integer)

• device – Device or Spotify ID.

player_shuffle(state, device=None)
Set player shuffle mode.

Parameters

• state (bool) – Shuffle mode state.

• device – Device or Spotify ID.

14 Chapter 3. API Reference

asyncspotify Documentation, Release 0.12.1

player_volume(volume, device=None)
Set player volume.

Parameters

• volume (int) – Value from 0 to 100.

• device – Device or Spotify ID.

playlist_add_tracks(playlist, *tracks, position=None)
Add several tracks to a playlist.

Parameters

• playlist – Playlist instance or Spotify ID.

• tracks – List of Spotify IDs or Track instance (or a mix).

• position (int) – Position in the playlist to insert tracks.

refresh()
Tell the authenticator to refresh this client, if applicable.

search(*types, q, limit=20, market=None, offset=None, include_external=None)→ dict
Searches for tracks, artists, albums and/or playlists.

Parameters

• types – One or more of the strings track, album, artist, playlist or the class
equivalents.

• q (str) – The search query. See Spotifys’ query construction guide here.

• limit (int) – How many results of each type to return.

• market – ISO-3166-1 country code or the string from_token.

• offset – Where to start the pagination.

• include_external – If this is equal to audio, the specified the response will include
any relevant audio content that is hosted externally.

Returns A dict with a key for each type, whose values are a list of instances.

search_album(q=None)→ asyncspotify.album.SimpleAlbum
Returns the top album for the query.

Returns SimpleAlbum

search_albums(q, limit=20, market=None, offset=None, include_external=None) →
List[asyncspotify.album.SimpleAlbum]

Alias for Client.search('album', ...)

Returns List[SimpleAlbum]

search_artist(q=None)→ asyncspotify.artist.FullArtist
Returns the top artist for the query.

Returns SimpleArtist or None

search_artists(q, limit=20, market=None, offset=None, include_external=None) →
List[asyncspotify.artist.FullArtist]

Alias for Client.search('artist, ...)

Returns List[FullArtist]

search_playlist(q=None)→ asyncspotify.playlist.SimplePlaylist
Returns the top playlist for the query.

3.1. Client 15

https://developer.spotify.com/documentation/web-api/reference/search/search/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

asyncspotify Documentation, Release 0.12.1

Returns SimplePlaylist

search_playlists(q, limit=20, market=None, offset=None, include_external=None) →
List[asyncspotify.playlist.SimplePlaylist]

Alias for Client.search('playlist', ...)

Returns List[SimplePlaylist]

search_track(q=None)→ asyncspotify.track.SimpleTrack
Returns the top track for the query.

Returns SimpleTrack or None

search_tracks(q, limit=20, market=None, offset=None, include_external=None) →
List[asyncspotify.track.SimpleTrack]

Alias for Client.search('track', ...)

Returns List[SimpleTrack]

3.2 Spotify Objects

Note: None of these objects should be instantiated manually. They are returned by convenience methods in Client.

class asyncspotify.SpotifyObject(client, data)
Represents a generic Spotify Object.

id: str Spotify ID of the object.

name: str Name of the object.

uri: str Spotify URI of the object.

3.2.1 Track

class asyncspotify.SimpleTrack(client, data)
Represents a Track object.

id: str Spotify ID of the track.

name: str Name of the track.

artists: List[Artist] List of artists that appear on the track.

images: List[Image] List of associated images, such as album cover in different sizes.

uri: str Spotify URI of the album.

link: str Spotify URL of the album.

type: str Plaintext string of object type: track.

available_markets: List[str] or None Markets where the album is available in ISO-3166-1 form.

disc_number: int What disc the track appears on. Usually 1 unless there are several discs in the album.

duration: timedelta timedelta instance representing the length of the track.

explicit: bool Whether the track is explicit or not.

external_urls: dict Dictionary that maps type to url.

16 Chapter 3. API Reference

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://docs.python.org/3/library/datetime.html#timedelta-objects

asyncspotify Documentation, Release 0.12.1

is_playable: bool tbc

linked_from: LinkedTrack tbc

restrictions: restrictions object tbc

preview_url: str An URL to a 30 second preview (MP3) of the track.

track_number: int The number of the track on the album.

is_local: bool Whether the track is from a local file.

audio_analysis()→ asyncspotify.audioanalysis.AudioAnalysis
Get ‘Audio Analysis’ of the track.

Parameters track – Track instance or Spotify ID of track.

Returns AudioAnalysis

audio_features()→ asyncspotify.audiofeatures.AudioFeatures
Get ‘Audio Features’ of the track.

Parameters track – Track instance or Spotify ID of track.

Returns AudioFeatures

avaliable_in(market)
Check if track is available in a market.

Parameters market – ISO-3166-1 value.

Returns

class asyncspotify.FullTrack(client, data)
Represents a complete Track object.

This type has some additional attributes not existent in SimpleTrack.

album: SimpleAlbum An instance of the album the track appears on.

popularity: int An indicator of the popularity of the track, 0 being least popular and 100 being the most.

external_ids: dict Dictionary of external IDs.

class asyncspotify.PlaylistTrack(client, data)
Represents a Track object originating from a playlist.

This type has some additional attributes not existent in SimpleTrack or FullTrack.

added_at: datetime Indicates when the track was added to the playlist.

added_by: User object Indicates who added the track to the playlist. The information provided from the API
is not enough to instantiate a PublicUser object, so it’s a plain copy of the returned json object.

3.2.2 Artist

class asyncspotify.SimpleArtist(client, data)
Represents an Artist object.

id: str Spotify ID of the artist.

name: str Name of the artist.

uri: str Spotify URI of the artist.

link: str Spotify URL of the artist.

3.2. Spotify Objects 17

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://docs.python.org/3/library/datetime.html#module-datetime

asyncspotify Documentation, Release 0.12.1

external_urls: dict Dictionary that maps type to url.

albums(limit=20, include_groups=None, country=None, offset=None)
Get artists albums

Returns List[SimpleAlbum]

related_artists()
Get related artists. Maximum of 20 artists.

Returns List[FullArtist]

top_tracks(market=None)
Returns this artists top tracks.

Parameters market – Market to find tracks for. Auto-resolved by the library if left blank.

Returns List[FullTrack]

class asyncspotify.FullArtist(client, data)
Represents a complete Artist object.

This type has some additional attributes not existent in SimpleArtist.

follow_count: int Follow count of the artist.

genres: List[str] Genres associated with the artist.

popularity: int An indicator of the popularity of the track, 0 being least popular and 100 being the most.

images: List[Image] List of associated images.

3.2.3 Playlist

class asyncspotify.SimplePlaylist(client, data)
Represents a playlist object.

Note: To iterate all tracks, you have to use the async for construct or fill the object with .fill() before
iterating .tracks.

id: str Spotify ID of the playlist.

name: str Name of the playlist.

tracks: List[SimpleTrack] All tracks in the playlist.

track_count: int The expected track count as advertised by the last paging object. is_filled() can return
True even if fewer tracks than this exists in tracks, since some fetched tracks from the API can be None
for various reasons.

uri: str Spotify URI of the playlist.

link: str Spotify URL of the playlist.

snapshot_id: str Spotify ID of the current playlist snapshot. Read about snapshots here.

collaborative: bool Whether the playlist is collaborative.

public: bool Whether the playlist is public.

owner: PublicUser Owner of the playlist.

external_urls: dict Dictionary that maps type to url.

18 Chapter 3. API Reference

https://developer.spotify.com/documentation/general/guides/working-with-playlists/

asyncspotify Documentation, Release 0.12.1

images: List[Image] List of associated images.

async for track in playlist
Create a pager and iterate all tracks in this object. Also updates the tracks cache (same as calling
fill()).

add_track(track, position=None)
Add a track to the playlist.

Parameters

• track – Spotify ID or Track instance.

• position (int) – Position in the playlist to insert tracks.

add_tracks(*tracks, position=None)
Add several tracks to the playlist.

Parameters

• tracks – Several Spotify IDs or Track instances (or a mix).

• position (int) – Position in the playlist to insert tracks.

edit(name=None, public=None, collaborative=None, description=None)
Edit the playlist.

Parameters

• name (str) – New name of the playlist.

• description (str) – New description of the playlist.

• public (bool) – New public state of the playlist.

• collaborative (bool) – New collaborative state of the playlist.

fill()
Update this objects tracks cache.

has_track(track)
Check if this object has a track.

is_filled()
Whether this object contains as many tracks as advertised by the previous pager.

class asyncspotify.FullPlaylist(client, data)
Represents a complete playlist object.

This type has some additional attributes not existent in SimplePlaylist.

description: str Description of the playlist, as set by the owner.

primary_color: str Primary color of the playlist, for aesthetic purposes.

follower_count: int Follower count of the playlist.

3.2.4 Album

class asyncspotify.SimpleAlbum(client, data)
Represents an Album object.

3.2. Spotify Objects 19

asyncspotify Documentation, Release 0.12.1

Note: To iterate all tracks, you have to use the async for construct or fill the object with .fill() before
iterating .tracks.

id: str Spotify ID of the album.

name: str Name of the album.

tracks: List[Track] List of tracks on the album.

artists: List[Artist] List of artists that appear on the album.

images: List[Image] List of associated images, such as album cover in different sizes.

track_count: int The expected track count as advertised by the last paging object. is_filled() can return
True even if fewer tracks than this exists in tracks, since some fetched tracks from the API can be None
for various reasons.

uri: str Spotify URI of the album.

link: str Spotify URL of the album.

type: str Plaintext string of object type: album.

album_type: Type of album, e.g. album, single or compilation.

available_markets: List[str] or None Markets where the album is available: ISO-3166-1.

external_urls: dict Dictionary that maps type to url.

release_date: datetime Date (and maybe time) of album release.

release_date_precision: str Precision of release_date. Can be year, month, or day.

album_group: str or None Type of album, e.g. album, single, compilation or appears_on.

async for track in album
Create a pager and iterate all tracks in this object. Also updates the tracks cache (same as calling
fill()).

fill()
Update this objects tracks cache.

has_track(track)
Check if this object has a track.

is_filled()
Whether this object contains as many tracks as advertised by the previous pager.

class asyncspotify.FullAlbum(client, data)
Represents a complete Album object.

This type has some additional attributes not existent in SimpleAlbum.

genres: List[str] List of genres associated with the album.

label: str The label for the album.

popularity: int An indicator of the popularity of the album, 0 being least popular and 100 being the most.

copyrights: dict List of copyright objects.

external_ids: dict Dictionary of external IDs.

20 Chapter 3. API Reference

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://docs.python.org/3/library/datetime.html#module-datetime

asyncspotify Documentation, Release 0.12.1

3.2.5 Audio Features

class asyncspotify.AudioFeatures(client, data)
Represents an Audio Features object.

id: str The Spotify ID of the track.

uri: str Spotify URI of the album.

analysis_url: str An HTTP URL to access the full audio analysis of this track.

track_href: str A link to the Web API endpoint providing full details of the track.

duration: timedelta The duration of the track.

key: int The estimated overall key of the track.

mode: int Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic
content is derived.

time_signature: int An estimated overall time signature of a track.

acousticness: float A confidence measure from 0.0 to 1.0 of whether the track is acoustic.

danceability: float A measure of how suitable the track is for dancing.

energy: float Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity.

instrumentalness: float Predicts whether a track contains no vocals.

liveness: float Detects the presence of an audience in the recording.

loudness: float The overall loudness of a track in decibels (dB).

speechiness: float Speechiness detects the presence of spoken words in a track.

valence: float A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track.

tempo: float The overall estimated tempo of a track in beats per minute (BPM).

3.2.6 Audio Analysis

class asyncspotify.AudioAnalysis(client, data)
Represents an Audio Analysis object.

This page only skims the details on this object. Please read the official Spotify documentation here.

bars: List[TimeInterval] The time intervals of the bars throughout the track. A bar (or measure) is a segment
of time defined as a given number of beats.

beats: List[TimeInterval] The time intervals of beats throughout the track. A beat is the basic time unit of a
piece of music; for example, each tick of a metronome.

sections: List[Section] List of sections of the track. Sections are defined by large variations in rhythm or
timbre, e.g. chorus, verse, bridge, guitar solo, etc.

segments: List[Segment] List of audio segments of the track. Audio segments attempts to subdivide a song
into many segments, with each segment containing a roughly consistent sound throughout its duration.

tatums: List[TimeInterval] The time intervals of tatums throughout the track. A tatum represents the lowest
regular pulse train that a listener intuitively infers from the timing of perceived musical events (segments).

3.2. Spotify Objects 21

https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-analysis/

asyncspotify Documentation, Release 0.12.1

3.2.7 Image

class asyncspotify.Image(data)
Represents an image.

url: str URL of the image.

width: int Width of the image

height: int Height of the image.

3.2.8 User

class asyncspotify.PublicUser(client, data)
Represents a User object.

id: str Spotify ID of the user.

name: str Name of the user. Also aliased to the display_name attribute.

images: List[Image] List of associated images, such as the users profile picture.

uri: str Spotify URI of the user.

link: str Spotify URL of the user.

follower_count: int or None Follower count of the user.

external_urls: dict Dictionary that maps type to url.

playlists()
Get the users playlists.

Alias of Client.get_user_playlists()

class asyncspotify.PrivateUser(client, data)
Represents a private User object, usually fetched through the me endpoint.

This type has some additional attributes not existent in PublicUser.

country: str ISO-3166-1 code of users country.

email: str Email of user. Please do not this email is note necessarily verified by Spotify.

product: str Users Spotify subscription level, could be free, open or premium. free and open are
synonyms.

create_playlist(name, public=False, collaborative=False, description=None)
Create a new playlist.

Parameters

• name (str) – Name of the new playlist.

• description (str) – Description of the new playlist.

• public (bool) – Whether the playlist should be public.

• collaborative (bool) – Whether the playlist should be collaborative (anyone can
edit it).

Returns A FullPlaylist instance.

22 Chapter 3. API Reference

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

asyncspotify Documentation, Release 0.12.1

playlists()
Get the users playlists.

Alias of Client.get_user_playlists()

top_artists(limit=20, offset=None, time_range=None)
Get the top artists of the current user.

Parameters

• limit (int) – How many artists to return. Maximum is 50.

• offset (int) – The index of the first result to return.

• time_range (str) – The time period for which data are selected to form a top.

Valid values for time_range

• long_term (calculated from several years of data and including all new data as it becomes
available),

• medium_term (approximately last 6 months),

• short_term (approximately last 4 weeks).

Returns List[SimpleArtist]

top_tracks(limit=20, offset=None, time_range=None)
Gets the top tracks of the current user.

Requires scope user-top-read.

Parameters

• limit (int) – How many tracks to return. Maximum is 50.

• offset (int) – The index of the first result to return.

• time_range (str) – The time period for which data are selected to form a top.

Valid values for time_range

• long_term (calculated from several years of data and including all new data as it becomes
available),

• medium_term (approximately last 6 months),

• short_term (approximately last 4 weeks).

Returns List[SimpleTrack]

3.2.9 Playing Objects

class asyncspotify.CurrentlyPlaying(client, data)
Represents a Currently Playing object.

timestamp: datetime When the object information was created by the Spotify API.

progress: timedelta How far into the current track the player is.

is_playing: bool Whether the track is playing or not.

track: Track What track is currently playing, can be None

3.2. Spotify Objects 23

asyncspotify Documentation, Release 0.12.1

currently_playing_type: str What is currently playing, can be track, episode, ad or unknown.

class asyncspotify.CurrentlyPlayingContext(client, data)
Represents a Player object, extends CurrentlyPlaying

This type has some additional attributes not existent in CurrentlyPlaying.

device: Device What device is owns this context.

repeat_state: str The repeat state of the player. Can be off, track or context.

shuffe_state: bool The shuffle state of the player. Can be True or False.

next()
Skips to the next track.

pause()
Pauses playback.

play(**kwargs)
Starts playback.

Parameters kwargs – Body parameters of the request.

player_play(
context_uri='spotify:album:1Je1IMUlBXcx1Fz0WE7oPT',
offset=dict(uri='spotify:track:1301WleyT98MSxVHPZCA6M'),
position_ms=1000

)

prev()
Goes to the previous track.

repeat(state)
Set player repeat mode.

Parameters state (str) – Can be ‘track’, ‘context’ or ‘off’.

seek(time)
Seeks to a specified time in the current track.

Parameters time – timedelta object or milliseconds (integer)

shuffle(state)
Set player shuffle mode.

Parameters state (bool) – Shuffle mode state.

volume(volume)
Set player volume.

Parameters volume (int) – Value from 0 to 100.

3.2.10 Device

class asyncspotify.Device(client, data)
Represents a Device object.

is_active: bool Whether this device is currently the active device.

is_private_session: bool If the device session is private.

is_restricted: bool Whether controlling this device is restricted. If this is true, no API commands will work
on it.

24 Chapter 3. API Reference

asyncspotify Documentation, Release 0.12.1

name: str Name of this device.

type: str Equal to device.

volume_percent: int Volume of this device. Integer between 0 to 100.

3.3 Authenticators

A guide on how authentication works is located here.

Examples can also be found under the quickstart guide.

Note: You do not have to worry about when your access token expires as the library will refresh the tokens automati-
cally. Unless you’re rolling your own authenticator, obviously.

3.3.1 ClientCredentialsFlow

Only requires a client id and secret to authenticate. Does not give access to private resources. No refresh token is used
here. To extend, it simply authorizes again.

class asyncspotify.ClientCredentialsFlow(client_id, client_secret, re-
sponse_class=<class ’asyncspo-
tify.oauth.response.AuthenticationResponse’>)

Implements the Client Credentials flow.

You can only access public resources using this authenticator.

authorize()
Authorize using this authenticator.

refresh(start_task=True)
Refresh this authenticator.

3.3.2 EasyAuthorizationCodeFlow

Extends AuthorizationCodeFlow and requires one extra argument, storage, which tells the authenticator
which file to store tokens in.

class asyncspotify.EasyAuthorizationCodeFlow(client_id, client_secret, scope=<Scope
value=0>, storage=’secret.json’,
response_class=<class ’asyncspo-
tify.oauth.response.AuthorizationCodeFlowResponse’>)

authorize()
Authorize the client. Reads from the file specificed by store.

create_authorize_route()
Craft the Route for the user to use for authorizing the client.

get_code_from_redirect(url)
Extract the authorization code from the redirect uri.

refresh(start_task=True)
Refresh this authenticator.

3.3. Authenticators 25

https://developer.spotify.com/documentation/general/guides/authorization-guide/

asyncspotify Documentation, Release 0.12.1

3.3.3 AuthorizationCodeFlow

Exposes helper methods for implementing a version of the Authorization Code flow.
EasyAuthorizationCodeFlow inherits from this and is recommended for most if access to private re-
sources is required.

class asyncspotify.AuthorizationCodeFlow(client_id, client_secret, scope, redi-
rect_uri, response_class=<class ’asyncspo-
tify.oauth.response.AuthorizationCodeFlowResponse’>)

Implements the Authorization Code flow.

Note: This class is not for general use, please use EasyAuthorizationCodeFlow or subclass this and
implement your own load(), store(response) and setup() methods.

client_id: str Your application client id.

client_secret: str Your application client secret.

scope: Scope The scope you’re requesting.

redirect_uri: str Where the user will be redirected to after accepting the client.

response_class: The type that is expected to be returned from load() and setup(), and is passed to
store(response) when a token refresh happens. Should be AuthorizationCodeFlowResponse or
inherit from it.

create_authorize_route()
Craft the Route for the user to use for authorizing the client.

get_code_from_redirect(url)
Extract the authorization code from the redirect uri.

authorize()
Authorize the client. Reads from the file specificed by store.

refresh(start_task=True)
Refresh this authenticator.

3.4 Scope

You can create a scope with specific permissions by passing kwargs in, like:

scope = Scope(
user_top_read=True,
playlist_modify_private=True

)

class asyncspotify.Scope(value=0, **kwargs)
Flags representing Spotify scopes.

ugc_image_upload Write access to user-provided images.

user_modify_playback_state Write access to a user’s playback state.

user_read_playback_state Read access to a user’s player state.

user_read_currently_playing Read access to a user’s currently playing content.

26 Chapter 3. API Reference

asyncspotify Documentation, Release 0.12.1

user_top_read Read access to a user’s top artists and tracks.

user_read_playback_position Read access to a user’s playback position in a content.

user_read_recently_played Read access to a user’s recently played tracks.

user_library_modify Write/delete access to a user’s “Your Music” library.

user_library_read Read access to a user’s “Your Music” library.

user_follow_modify Write/delete access to the list of artists and other users that the user follows.

user_follow_read Read access to the list of artists and other users that the user follows.

playlist_read_private Read access to user’s private playlists.

playlist_modify_public Write access to a user’s public playlists.

playlist_modify_private Write access to a user’s private playlists.

playlist_read_collaborative Include collaborative playlists when requesting a user’s playlists.

user_read_private Read access to user’s subscription details (type of user account).

user_read_email Read access to user’s email address.

app_remote_control Remote control playback of Spotify. This scope is currently available to Spotify iOS and
Android SDKs.

streaming Control playback of a Spotify track. This scope is currently available to the Web Playback SDK.
The user must have a Spotify Premium account.

all()
Return Scope with all scopes enabled.

none()
Return Scope with no scopes enabled.

string()
Get a string representation of the enabled scopes. Used when authenticating.

3.5 Exceptions

class asyncspotify.SpotifyException
Base exception of all exceptions thrown by this library.

class asyncspotify.HTTPException(response, message=None)
Bases: asyncspotify.exceptions.SpotifyException

Base exception of all HTTP related exceptions.

response: aiohttp.ClientResponse The response of the failed HTTP request.

message: Optional[str] Message about what went wrong.

class asyncspotify.BadRequest(response, message=None)
Bases: asyncspotify.exceptions.HTTPException

400 Bad Request

Base class for all 4xx status code exceptions.

3.5. Exceptions 27

asyncspotify Documentation, Release 0.12.1

class asyncspotify.Unauthorized(response, message=None)
Bases: asyncspotify.exceptions.BadRequest

401 Unauthorized

class asyncspotify.Forbidden(response, message=None)
Bases: asyncspotify.exceptions.BadRequest

403 Forbidden

class asyncspotify.NotFound(response, message=None)
Bases: asyncspotify.exceptions.BadRequest

404 Not Found

class asyncspotify.NotAllowed(response, message=None)
Bases: asyncspotify.exceptions.BadRequest

405 Method Not Allowed

3.6 Utilities

asyncspotify.utils.get(items, **kwargs)
Get an item from a list of items.

Parameters

• items – List or iterator containing Object s

• kwargs – kwargs that should match with the objects attributes.

Returns First item that matched.

asyncspotify.utils.find(items, **kwargs)
Same as get() except it returns a list of all matching items.

Parameters

• items – List or iterator containing Object

• kwargs – kwargs that should match with the objects attributes.

Returns List[Object]

28 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

29

asyncspotify Documentation, Release 0.12.1

30 Chapter 4. Indices and tables

Index

Symbols
__init__() (asyncspotify.Client method), 9

A
add_track() (asyncspotify.SimplePlaylist method), 19
add_tracks() (asyncspotify.SimplePlaylist method),

19
albums() (asyncspotify.SimpleArtist method), 18
all() (asyncspotify.Scope method), 27
audio_analysis() (asyncspotify.SimpleTrack

method), 17
audio_features() (asyncspotify.SimpleTrack

method), 17
AudioAnalysis (class in asyncspotify), 21
AudioFeatures (class in asyncspotify), 21
AuthorizationCodeFlow (class in asyncspotify),

26
authorize() (asyncspotify.AuthorizationCodeFlow

method), 26
authorize() (asyncspotify.Client method), 9
authorize() (asyncspotify.ClientCredentialsFlow

method), 25
authorize() (asyncspo-

tify.EasyAuthorizationCodeFlow method),
25

avaliable_in() (asyncspotify.SimpleTrack method),
17

B
BadRequest (class in asyncspotify), 27

C
Client (class in asyncspotify), 9
ClientCredentialsFlow (class in asyncspotify),

25
close() (asyncspotify.Client method), 9
create_authorize_route() (asyncspo-

tify.AuthorizationCodeFlow method), 26

create_authorize_route() (asyncspo-
tify.EasyAuthorizationCodeFlow method),
25

create_playlist() (asyncspotify.Client method),
10

create_playlist() (asyncspotify.PrivateUser
method), 22

CurrentlyPlaying (class in asyncspotify), 23
CurrentlyPlayingContext (class in asyncspo-

tify), 24

D
Device (class in asyncspotify), 24

E
EasyAuthorizationCodeFlow (class in asyncspo-

tify), 25
edit() (asyncspotify.SimplePlaylist method), 19
edit_playlist() (asyncspotify.Client method), 10

F
fill() (asyncspotify.SimpleAlbum method), 20
fill() (asyncspotify.SimplePlaylist method), 19
find() (in module asyncspotify.utils), 28
following() (asyncspotify.Client method), 10
Forbidden (class in asyncspotify), 28
FullAlbum (class in asyncspotify), 20
FullArtist (class in asyncspotify), 18
FullPlaylist (class in asyncspotify), 19
FullTrack (class in asyncspotify), 17

G
get() (in module asyncspotify.utils), 28
get_album() (asyncspotify.Client method), 10
get_album_tracks() (asyncspotify.Client method),

10
get_albums() (asyncspotify.Client method), 11
get_artist() (asyncspotify.Client method), 11

31

asyncspotify Documentation, Release 0.12.1

get_artist_albums() (asyncspotify.Client
method), 11

get_artist_related_artists() (asyncspo-
tify.Client method), 11

get_artist_top_tracks() (asyncspotify.Client
method), 11

get_artists() (asyncspotify.Client method), 11
get_audio_analysis() (asyncspotify.Client

method), 12
get_audio_features() (asyncspotify.Client

method), 12
get_audio_features_multiple_tracks()

(asyncspotify.Client method), 12
get_code_from_redirect() (asyncspo-

tify.AuthorizationCodeFlow method), 26
get_code_from_redirect() (asyncspo-

tify.EasyAuthorizationCodeFlow method),
25

get_devices() (asyncspotify.Client method), 12
get_followed_artists() (asyncspotify.Client

method), 12
get_me() (asyncspotify.Client method), 12
get_me_top_artists() (asyncspotify.Client

method), 12
get_me_top_tracks() (asyncspotify.Client

method), 12
get_player() (asyncspotify.Client method), 13
get_playlist() (asyncspotify.Client method), 13
get_playlist_tracks() (asyncspotify.Client

method), 13
get_track() (asyncspotify.Client method), 13
get_tracks() (asyncspotify.Client method), 13
get_user() (asyncspotify.Client method), 13
get_user_playlists() (asyncspotify.Client

method), 13

H
has_track() (asyncspotify.SimpleAlbum method), 20
has_track() (asyncspotify.SimplePlaylist method), 19
HTTPException (class in asyncspotify), 27

I
Image (class in asyncspotify), 22
is_filled() (asyncspotify.SimpleAlbum method), 20
is_filled() (asyncspotify.SimplePlaylist method), 19

N
next() (asyncspotify.CurrentlyPlayingContext

method), 24
none() (asyncspotify.Scope method), 27
NotAllowed (class in asyncspotify), 28
NotFound (class in asyncspotify), 28

P
pause() (asyncspotify.CurrentlyPlayingContext

method), 24
play() (asyncspotify.CurrentlyPlayingContext

method), 24
player_next() (asyncspotify.Client method), 14
player_pause() (asyncspotify.Client method), 14
player_play() (asyncspotify.Client method), 14
player_prev() (asyncspotify.Client method), 14
player_repeat() (asyncspotify.Client method), 14
player_seek() (asyncspotify.Client method), 14
player_shuffle() (asyncspotify.Client method), 14
player_volume() (asyncspotify.Client method), 14
playlist_add_tracks() (asyncspotify.Client

method), 15
playlists() (asyncspotify.PrivateUser method), 22
playlists() (asyncspotify.PublicUser method), 22
PlaylistTrack (class in asyncspotify), 17
prev() (asyncspotify.CurrentlyPlayingContext

method), 24
PrivateUser (class in asyncspotify), 22
PublicUser (class in asyncspotify), 22

R
refresh() (asyncspotify.AuthorizationCodeFlow

method), 26
refresh() (asyncspotify.Client method), 15
refresh() (asyncspotify.ClientCredentialsFlow

method), 25
refresh() (asyncspotify.EasyAuthorizationCodeFlow

method), 25
related_artists() (asyncspotify.SimpleArtist

method), 18
repeat() (asyncspotify.CurrentlyPlayingContext

method), 24

S
Scope (class in asyncspotify), 26
search() (asyncspotify.Client method), 15
search_album() (asyncspotify.Client method), 15
search_albums() (asyncspotify.Client method), 15
search_artist() (asyncspotify.Client method), 15
search_artists() (asyncspotify.Client method), 15
search_playlist() (asyncspotify.Client method),

15
search_playlists() (asyncspotify.Client method),

16
search_track() (asyncspotify.Client method), 16
search_tracks() (asyncspotify.Client method), 16
seek() (asyncspotify.CurrentlyPlayingContext

method), 24
shuffle() (asyncspotify.CurrentlyPlayingContext

method), 24

32 Index

asyncspotify Documentation, Release 0.12.1

SimpleAlbum (class in asyncspotify), 19
SimpleArtist (class in asyncspotify), 17
SimplePlaylist (class in asyncspotify), 18
SimpleTrack (class in asyncspotify), 16
SpotifyException (class in asyncspotify), 27
SpotifyObject (class in asyncspotify), 16
string() (asyncspotify.Scope method), 27

T
top_artists() (asyncspotify.PrivateUser method),

23
top_tracks() (asyncspotify.PrivateUser method), 23
top_tracks() (asyncspotify.SimpleArtist method), 18

U
Unauthorized (class in asyncspotify), 27

V
volume() (asyncspotify.CurrentlyPlayingContext

method), 24

Index 33

	Quickstart
	Installing
	Getting started

	Examples
	Getting Spotify Objects
	Getting playlists and adding tracks
	Searching
	Getting users/yourself

	API Reference
	Client
	Spotify Objects
	Track
	Artist
	Playlist
	Album
	Audio Features
	Audio Analysis
	Image
	User
	Playing Objects
	Device

	Authenticators
	ClientCredentialsFlow
	EasyAuthorizationCodeFlow
	AuthorizationCodeFlow

	Scope
	Exceptions
	Utilities

	Indices and tables
	Index

